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The propositions and theorems marked with a ? indicate that the proof was important and

relatively short, and thus should be learned for exams. Definitions are shown in blue while

theorems are shown in purple.

1 Topology

1 (topology, open sets) Given a set X, τ ⊆ P(X) is a topology if

1. ∅, X ∈ T
2. U, V ∈ T ⇒ U ∩ V ∈ T
3. {Uα}α∈A ∈ T ⇒ ∪α∈AUα ∈ T

The elements of the topology are called the open sets. A set C is called closed if CC is open.

ex. If (X, d) is a metric space, then U ⊆ X is open ⇔ ∀x ∈ U , ∃r > 0 such that

B(x, r) ⊆ U .

We call T = {∅, X} the indiscrete (or trivial) topology.

We call T = P(X) the discrete topology.

If Y ⊆ X, the relative topology is TY = {O ∩ Y | O ∈ T }.

2 (closure, interior, boundary) For an arbitrary A ⊆ X, let A denote the smallest

closed set containing A, called the closure

A =
⋂
{C ⊆ X | A ⊆ C and C is closed }.

We let the interior of A, A◦, be the largest open set contained in A:

A◦ =
⋃
{O ⊆ X | O ⊆ A and O is open }.

The boundary of A, δA is δA = A\A◦.

3 (limit point) We say p is a limit point (or accumulation point) of A provided for every

open set O 3 p, (O ∩ A)\{p} 6= ∅. We let A′ = acc(A) = {limit points of A}.

Proposition: A = A ∪ acc(A). Thus, A is closed ⇔ acc(A) ⊆ A⇔ A = A.

4 (local base, base) For x ∈ X, a family Bx ⊆ T is called a base for T at x (or a local

base at x) provided

1. ∀U ∈ Bx, x ∈ U
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2. ∀O ∈ T such that x ∈ O, ∃U ∈ Bx such that U ⊆ O.

A base for T is a family B ⊆ T such that for all x ∈ X, Bx = {O ∈ B | x ∈ O} is a base for

T at x.

S ⊆ T is a subbase for the topology provided the set of all finite intersections of elements is

a base.

Theorem: TFAE:

1. B is a base

2. every open set is the union of sets in B
3. each x ∈ X is contained in some V ∈ B and if U, V ∈ B and x ∈ U ∩ V then there

exists some W ∈ B such that x ∈ W ⊆ U ∩ V

Theorem: The topology generated by E ⊆ P(X) contains ∅, X and all unions of finite

intersections of elements in E .

5 (product topology) Suppose (Xα, Tα)α∈A are topological spaces and let X = Πα∈AXα.

For α ∈ A, let πα be the projection from X onto Xα, and set

S = {π−1
α (O) | O ∈ Tα, α ∈ A}.

Then S is a subbase for the product topology.

Proposition: For X = Πα∈AXα and xn ∈ X, then xn → x in X ⇔ πα(xn) = xn(α) →
x(α) = πα(x) for all α ∈ A.

6 (first/second countable) (X, T ) is first countable provided ∀x ∈ X, there exists a

countable base at x.

(X, T ) is second countable provided there is a countable base for T .

Proposition: If X is second countable, then X is separable. The converse is true in metric

spaces.

7 (convergence in a topological space) For a topological space (X, T ) and a sequence

{xn} ⊆ X, p ∈ X we say {xn} converges to p (xn → p) provided for every open O ∈ T with

p ∈ O, ∃N such that ∀n ≥ N , xn ∈ O.

Note: limits need not be unique.

Proposition: Suppose X is first countable, A ⊆ X, p ∈ X. Then p ∈ A ⇔ ∃ sequence

{xn} in A such that xn → p.

8 (cofinite and cocountable topologies) The cofinite topology is
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T = {O ⊆ X | Oc is finite}.

The cocountable topology is

T = {O ⊆ X | Oc is countable}.

9 (T1/T2/T3/T4)

• T1 - ∀x ∈ X, {x} is closed

• T2 (Hausdorff) - ∀x 6= y in X, there exists Ox, Oy ∈ T such that x ∈ Ox, y ∈ Oy and

Ox ∩Oy = ∅
• T3 (regular) - (X, T ) is T1 and for all x ∈ X, closed C with x /∈ C, there exists open

U, V ∈ T such that x ∈ U , C ⊆ V , and U ∩ V = ∅
• T4 (normal) - (X, T ) is T1 and for all disjoint closed sets A,B there exists open U, V

with A ⊆ U , B ⊆ V and U ∩ V = ∅

Fact: T4⇒ T3⇒ T2⇒ T1.

10 (continuous (at x)) Let (X, T ), (Y, σ) be topological spaces. We say the function

f : X → Y is continuous at x ∈ X if for every open O ∈ σ with f(x) ∈ O, there exists an

open U ∈ T with x ∈ U such that f(U) ⊆ O.

f is continuous if for every x ∈ X, f is continuous at x.

Proposition: TFAE for f : X → Y

1. f is continuous

2. for every open O in Y , f−1(O) is open in X

3. for every closed C in Y , f−1(C) is closed in X

4. there is a subbase S for Y such that for every O ∈ S, f−1(O) is open in X

11 (weak topology) For topological spaces (Xα, Tα)α∈A and functions f : X → Xα from a

set X. Then W ((fα)α∈A) is the weakest (smallest) topology on X making each f continuous.

This topology is generated by sets of the form f−1
α (Uα) where α ∈ A and Uα is open in Xα.x

12 (product space theorems) Theorem 1: If Xα is Hausdorff for each α ∈ A, then

X = Πα∈AXα is Hausdorff.

Theorem 2: If Xα and Y are topological spaces and X = ΠXα then f : Y → X is

continuous IFF πα ◦ f is continuous for each α.
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Theorem 3: If X is a topological space, A is a nonempty set, and {fn} is a sequence in

XA then fn → f in the product topology IFF fn → f pointwise.

13 (C(X)) For a topological space (X, T ), let C(X) be the set of all R-valued continuous

functions f : X → R.

Let Cb(X) = BC(X) be all R-valued bounded, continuous functions f : X → R. We equip

Cb(X) with the norm ‖f‖∞ = supx∈X |f(x)|.

Let `∞(X) be the set of all R-valued bounded functions.

Theorem: If X is normal then the topology on X is W (Cb(X)).

14 (Urysohn’s Lemma) Let (X, T ) be normal. If A,B are disjoint closed sets and a 6= b

in R. Then there exists some f ∈ C(X, [a, b]) such that f |A ≡ a and f |B ≡ b.

proof uses nastay lemma

15 (Tiktze Theorem) Version 1: Let (X, T ) be normal. If A ⊆ X is closed and

f ∈ C(A, (a, b)) then there exists some F ∈ C(X, [a, b]) such that F |A = f .

Version 2: Let (X, T ) be normal. If A ⊆ X is closed and f ∈ C(A, (a, b)) then there

exists some F ∈ C(X,R) such that F |A = f .

X is called completely regular (or a T3 1
2

space) if X is T1 and for each closed A ⊆ X, x /∈ A
there exists some f ∈ C(X, [0, 1]) such that f(x) = 1, f = 0 on A.

2 Nets

16 (net) (D,≤) is called a directed set if

• a ≤ a

• if a ≤ b and b ≤ c then a ≤ c

• ∀α, β ∈ D, ∃γ ∈ D such that α ≤ γ, β ≤ γ

A net in X is a function from a directed set into X.

For {xα}α∈A a net and α0 ∈ A, the tail of the net is Tα0 = {xα | α ∈ A, α ≥ α0}.

17 (further net definitions) We say a net {xα} is frequently in a set C if Tα ∩ C 6= ∅
for all α ∈ A.

We say a net {xα} is eventually in a set C if there exists some α0 ∈ A such that Tα0 ⊆ C.

(Note: eventually in C ⇒ frequently in C)
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Suppose {xα}α∈A is a net in the topological space X, and p ∈ X. Then xα → p means for

every open set O with p ∈ O, {xα} is eventualy in O.

We say p is a cluster point of the net if for every open set O 3 p the net {xα} is frequently

in O.

We say {yβ}β∈B is a subnet of {xα} provided there exists some h : B → A such that

• ∀α0 ∈ A, ∃β0 ∈ B such that for all β ≥ β0, h(β) ≥ α0

• xh(β) = yβ for all β ∈ B

ex. For 1, 2, 3, 4, . . . then 2, 1, 3, 2, 4, 3, 5, 4, . . . is a subnet but not a subsequence

Theorem: For a net {xα} in (X, T ) TFAE:

1. x is a cluster point of {xα}
2. there exists a subnet {yβ} of {xα} such that yβ → x

Theorem: f is continuous at x ⇔ for all nets xα → x, f(xα)→ f(x)

Theorem: For D ⊆ X, p ∈ D ⇔ there exists a net xα in D s.t. xα → x.

3 Compactness

18 (notions of compactness)

1. A is compact i.e. every open cover has a finite subcover

1’. every family of closed sets with the finite intersection property has a non-empty

intersection

2. X is sequentially compact if every sequence has a convergent subsequence.

3. X is countable compact if every countable open cover has a finite subcover.

3’. If C1 ⊇ C2 ⊇ . . . are closed and non-empty then ∩Cn 6= ∅
4. every infinite subset of X has a limit point

1.⇔ 1′.⇒ 3. and 2.⇒ 3.⇔ 3′.⇒ 4.

Theorem: If X is compact and C ⊆ X is closed, then C is compact.

Theorem: If X is Hausdorff, then compact sets are also closed.

Theorem: If f : X → Y is continuous and C ⊆ X is compact then f(C) is compact.

19 (net compactness) We call a net {xα} universal if for all Y ⊆ X, if the net is

frequently in Y then the net is eventually in Y .

Lemma: every net has a universal subnet.
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Theorem: For a topological space (X, T ), TFAE:

1. X is compact

2. every net in X has a cluster point

3. every net in X has a convergent subnet

4. every universal net in X converges

20 (locally compact) A topological space is called locally compact if every point has a

compact neighborhood. Locally compact Hausdorff spaces are abbreviated LCH.

Equivalently, every point has an open neighborhood U with closure U compact.

21 (Tychonoff Theorem) If (Xα) are compact topological spaces, then X = Πα∈AXα

(with the product topology) is compact.

Theorem: Axiom of Choice ⇔ Tychonoff

22 (equicontinuous) Let (X, T ) be a topological space, J ⊆ C(X, (Z, ‖ · ‖)). For x ∈ X
we say J is equicontinuous at x provided for all ε > 0 there exists some neighborhood Ux of

x such that

sup
f∈J

sup
y∈Ux
‖f(x)− f(y)‖ ≤ ε.

We say J is equicontinuous if it is equicontinuous at x for all x ∈ X.

We say J is pointwise bounded if for all x ∈ X, supf∈J ‖f(x)‖ <∞.

23 (Arzela-Ascoli) We say a metric space X is totally bounded if for any r > 0, X can

be covered by a finite number of balls of radius r.

Arzela-Ascoli Let X be a compact Hausdorff space. If F is an equicontinuous, pointwise

bounded subset of C(X) then F is totally bounded in the uniform metric and the closure of

F in C(X) is compact.

Alternative version 1: Let X be a σ-compact LCH space. If {fn} is an equicontinuous,

pointwise bounded sequence in C(X), then there exists a f ∈ C(X) and a subsequence of

{fn} that converges to f uniformly on compact sets.

Alternative version 2: Let X be compact and F ⊆ C(X). Then F is compact in C(X)

IFF

1. F is equicontinuous

2. F is pointwise bounded

24 (Stone-Weierstrass) A is called an algebra if it is a real vector subspace of C(X)

8



such that fg ∈ A whenever f, g ∈ A.

Let X be a compact, Hausdorff space and B ⊆ C(X,R) a subalgebra such that B separates

points (that is, for x 6= y,∃f ∈ B with f(x) 6= f(y)). Then if there exists some x0 ∈ X such

that f(x0) = 0 for all f ∈ B, then B = {f ∈ C(X,R) | f(x0) = 0}. Otherwise, B = C(X).

4 Normed Spaces

25 (complete) A Banach space is a complete normed vector space. It is called complete

if every Cauchy sequence converges in X.

Theorem: X is complete ⇔ when
∑

n∈N ‖xn‖ <∞ then (
∑N

n=1 xn)N converges in X

26 (linear equivalences) If X, Y are normed spaces and T : X → Y is linear, then

TFAE:

1. T is continuous

2. T is continuous at 0

3. T is bounded

that is, there exists some c > 0 such that ‖Tx‖ ≤ c‖x‖.
Equivalently, sup‖x‖≤1 ‖Tx‖ <∞

4. T is Lipschitz

that is, there exists some c such that ‖Tx− Ty‖ ≤ c‖x− y‖

We denote L(X, Y ) = {T : X → Y | T is continuous and linear} with norm ‖T‖ =

sup‖x‖≤1 ‖Tx‖. Let X∗ = L(X,R) be the dual of X.

27 (invertibility) Suppose X is a Banach algebra with identity, ‖I‖ = 1. Then

if ‖I − a‖ < 1 then a is invertible and ‖a−1‖ ≤ 1
1−‖I−a‖

if y is invertible and ‖y − x‖ < 1
‖y−1‖ then x is invertible (so invertible elements are open)

5 Quotient Spaces

28 (algebra quotient) If X is a normed space and M ⊆ X is a closed subspace, then

X/M = {x + M | x ∈ X} is the algebra quotient with (x + M) + (y + M) = (x + y) + M .

We have the linear surjection
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πM : X → X/M

x 7→ x+M

where ker(πM) = M . Put the norm on X/M to be

‖x+M‖ = inf{‖y‖ | y ∈ x+M} = inf{‖x−m‖ | m ∈M} = dist(x,M)

If M is not closed, this is merely a seminorm. Then πM(BX(1, 0)) = BX/M(0, 1) so πM is

continuous and ‖πM‖ = 1.

29 (Hahn-Banach) For a real vector space X, we say p : X → R is a sublinear mapping

if p(x+ y) ≤ p(x) + p(y) and p(λx) = λp(x) when λ ≥ 0.

Hahn-Banach: Let X be a real vector space, p a sublinear functional on X, M a subspace

of X, and f a linear functional on M such that f |M ≤ p|M . Then there exists a linear

functional F on X such that F ≤ p on X and F |M = f .

For the complex case, we require |f(x)| ≤ p(x) and we get |F (x)| ≤ p(x).

30 (Applications of Hahn-Banach)

1. If M is a closed subspace of X and x ∈ X M then there exists f ∈ X∗ such that

f(x) 6= 0 and f |M = 0. In fact, if δ = infy∈M ‖x−y‖, f can be taken to satisfy ‖f‖ = 1

and f(x) = δ.

2. If x 6= 0 ∈ X, there exists f ∈ X∗ such that ‖f‖ = 1 and f(x) = ‖x‖
3. The bounded linear functionals on X separate points

31 (reflexive) Theorem: If x ∈ X, define x̂ : X∗ → C by x̂(f) = f(x). Then the map

x 7→ x̂ is a linear isometry from X into X∗∗.

We call X reflexive if X∗∗ = X. Equivalently, X is reflexive ifˆis surjective.

Theorem: Suppose X is a Banach space and M is a closed subspace. Then

1. X is reflexive ⇒ M is reflexive

2. X reflexive ⇔ X∗ reflexive

3. X reflexive ⇒ X/M reflexive

4. X reflexive ⇔ BX(0, 1) is weakly compact

32 (Baire Category) We say C is nowhere dense if (C)◦ = ∅.

Theorem: Let X be a complete metric space. Then if {Un} is a sequence of open dense

sets, ∩Un is dense. Thus, X is not a countable union of nowhere dense sets.

10



A set that is a countable union of nowhere dense sets is said to be of first category (and it’s

complement is called residual). A set which is not a countable union of nowhere dense sets

is called second category.

33 (uniform boundedness principle) Let X be a Banach space and Y a normed space,

S ⊆ L(X, Y ) where S is pointwise bounded (i.e. ∀x ∈ X, sup{‖Tx‖ | T ∈ S} <∞).

Then S is uniformly bounded (i.e. supT∈S ‖T‖ <∞.

34 (Banach-Steinhaus) Suppose X is a Banach space and Y is a normed space, and

{Tn} ⊆ L(X, Y ) and for all x ∈ X, Tnx→ Tx in Y . Then T ∈ L(X, Y ).

35 (open mapping theorem) little open mapping theorem: Suppose X is a Banach

space and Y is a normed space, T ∈ L(X, Y ) and r > 0. Then if T (B(0, 1)) ⊇ B(0, r) then

T (B(0, 1)) ⊇ B(0, r).

open mapping theorem: Suppose X, Y are Banach spaces and T ∈ L(X, Y ) is surjective.

Then T is an open mapping.

Remark: For a linear map T , T is open ⇔ ∃r > 0 such that T (B(0, 1)) ⊇ B(0, r).

36 (closed graph) For Banach spaces X, Y and T : X → Y linear, then T ⊆ X × Y is

closed ⇔ T is a bounded linear operator.

6 Topological Vector Spaces

37 (TVS) Let X be a vector space, T a topology on X. Then (X, T ) is a TVS provided

• + : X ×X → X is continuous

• · : R×X → X is continuous

ex. normed spaces under the weak topology w(X∗).

We say the TVS (X, T ) is locally convex there exists a local base for T consisting of convex

sets.

Theorem: If (X, T ) is a locally convex TVS, then there exists seminorms {pα | α ∈ A}
such that T = w(pα).

38 (gauge function) Define the gauge function (or Minkowski) of a convex set U in the

vector space X to be

PU(x) = inf{λ > 0 | x
λ
∈ U}
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We say p is an internal point of U (that is, ∀y ∈ X, ∃ε > 0 such that p+ [|z| ≤ ε]y ⊆ U). If

0 is an interval point, then the gauge function is defined since the set is non-empty. Then

1. PU(λx) = λPU(x) if λ ≥ 0

2. PU(x+ y) ≤ PU(x) + PU(y)

3. If U is balanced, then PU(λx) = |λ|PU(x)

39 (Separation Theorem / Geometric Hahn-Banach) Say X is a LCTVS over R
and U,C ⊆ X are convex sets such that U ∩ C = ∅ and U◦ 6= ∅. Then there exists some

non-zero f ∈ X∗ and some α ∈ R such that U ⊆ [f < α] and C ⊆ [f ≥ α]

Corollary 1: If (X, T ) is Hausdorff LCTVS, then X∗ separates points of X

Corollary 2: If (X, T ) is a LCTVS, C ⊆ X is convex, then C
weak

= C
T

.

Corollary 3: If X is a normed space and A ⊆ X, then A is norm bounded ⇔ A is weakly

bounded (where A is weakly bounded if for all x∗ ∈ X∗, supx∈X |〈x∗, x〉| <∞

40 (topologies on X∗) On X∗ we have three topologies:

weak∗(w(X̂)) ⊆ weak(w(X∗∗)) ⊆ norm topology

Where the first is the topology of pointwise convergence on X and the first ⊆ is equality if

X is reflexive.

41 (Banach-Alaoglu) If X is a normed space, then BX∗ = {x∗ ∈ X∗ | ‖x∗‖ ≤ 1} is

weak∗-compact.

Corollary: If X is reflexive, then BX∗ is weakly compact.

X is reflexive if and only if BX is weakly compact.

42 (Goldstine) Suppose X is normed. Then B̂X is weak∗-dense in BX∗∗ , B̂X ⊆ BX∗∗

where we have equality IFF X is reflexive.

43 (random theorems) Theorem 1: Suppose X is a normed space.

1. There exists a compact Hausdorff space K such that X is isometrically isomorphic to

a subspace of C(X).

2. If X is separable, K can be taken to be a compact metric space

Moreover, if X is separable, K can be taken to be the Cantor set {0, 1}N or [0, 1].

Theorem 2: If X is a normed space, (BX∗ ,weak∗) is metrizable ⇔ X is separable.

44 (completely regular) F ⊆ C(X) is said to separate points from closed sets proved

for all x ∈ X and closed set C ⊆ X with x /∈ C, then there exists some f ∈ F such that

f(x) /∈ f(C).
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If C(X) separates points from closed sets, X is said to be completely regular.

Proposition If (X, T ) is completely regular, then T = w(C(X)) = w(C(X, [0, 1])).

7 Lp spaces

45 (Lp(µ)) For 0 < p <∞, let Lp = { real-valued measurable functions f |
∫
|f |pdµ <∞}

with ‖f‖p =
(∫
|f |pdµ

)1/p
. This is a norm for 1 ≤ p <∞.

Let L∞ = { all bounded measurable functions } with supremum norm defined by

‖f‖∞ := inf

{
sup
x∈EC

|f(x)| | µ(E) = 0

}
= inf

h∈L∞,h=0a.e.
‖f − h‖sup

46 (Riesz-Fisher) For 1 ≤ p <∞, Lp is complete

47 (Hölder’s inequality) Let q be the conjugate exponent of p so 1
p

+ 1
q

= 1 (i.e. q = p
p−1

)

For measurable f, g and 1 < p <∞ then ‖fg‖1 ≤ ‖f‖p‖g‖q.

If f ∈ Lp and g ∈ Lq if and only if f = 0 a.e. OR g = 0 a.e. OR |f |p is a scalar multiple of

|g|q.

If f ∈ Lp then ‖f‖p = max
{∫

fgdµ | ‖g‖q ≤ 1
}

(maximum is achieved! by g = sgn(f)).

Alternate Hölder’s inequality: For 0 < λ < 1, then
∫
|f |λ|g|1−λ ≤

(∫
|f |
)λ (∫ |g|)1−λ

.

48 (Minkowski) For 1 ≤ p <∞, ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

49 (simple functions in Lp) Let Σ be all measurable simple functions supported on sets

of finite measure. Then Σ is dense in Lp for 0 < p <∞.

Continuation of Hölder: Assume µ is σ-finite, 1 < q < ∞ and g is measurable. Then

‖g‖q = sup{
∫
fg | ‖f‖p ≤ 1, f ∈ Σ}.

If µ is semifinite (i.e. if µ(A) = ∞ then ∃B ⊆ A such that 0 < µ(B) < ∞) then ‖g‖∞ =

sup{
∫
fg | ‖f‖1 ≤ 1, f ∈ Σ}.

50 (dual of Lp) For 1 ≤ p <∞ and q the conjugate exponent of p, then there is a mapping

Jp : Lq → (R)L
p

defined via Jp(g)(f) =
∫
fg ≤ ‖g‖q‖f‖p.

So Jp(g) is linear and ‖Jp(g)‖(Lp)∗ ≤ ‖g‖q.

Moreover, Jp is linear, so Jp is a linear operator which maps Lq onto (Lp)∗ and ‖Jp‖ ≤ 1.
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Theorem: Jp is surjective if 1 < p <∞ and J1 is surjective if µ is σ-finite.

Corollary: For 1 < p <∞, then Lp is reflexive.

51 (relations between Lp as p varies) Theorem 1: If µ(X) <∞ and 0 < p < r ≤ ∞
then if f is measurable, ‖f‖p ≤ µ(X)

1
p
− 1
r ‖f‖r

Theorem 2: If µ is the counting measure, then for 0 < p < r ≤ ∞, ‖f‖p ≥ ‖f‖r.
Therefore, `p ⊆ `r.

Theorem 3: If 0 < p < q < r ≤ ∞ and 1
q

= λ1
p

+ (1− λ)1
r

then

‖f‖q ≤ ‖f‖λp‖f‖1−λ
r

52 (inequalities) Chebychev’s inequality: For f ∈ Lp for 0 < p <∞ and any α > 0,

αpµ[|f | > α] ≤ ‖f‖pp

Theorem: For σ-finite measure spaces (X,M, µ) and (Y,N , ν) and K : X×Y → R define

(TKf)(y) =

∫
X

K(x, y)f(x)dµ(x)

Suppose there exists c such that
∫
X
|K(x, y)|dµ(x) ≤ c and

∫
Y
|K(x, y)|dν(y) ≤ c and K is

µ×ν measurable. Then TK maps Lp(µ) into Lq(ν) for all 1 ≤ p ≤ ∞, and ‖TK‖Lp(µ)→Lq(ν) ≤
c.

53 (Distribution functions) Define the total distribution function of f ∈ L0 via

λf : [0,∞)→ [0,∞]

t 7→ µ[|f | > t]

Proposition:

1. λf is decreasing and right continuous

2. |f | ≤ |g| implies λf ≤ λg
3. If |fn| ↑ |f | a.e. then λfn ↑ λf
4. λg+h(t) ≤ λg(t/2) + λh(t/2)

Theorem: Take φ : (0,∞) → R+ Borel measurable and λf (t) < ∞ for all t > 0. Then
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∫
X
φ ◦ |f |dµ = −

∫∞
0
φ(t)dλf (t).

‖f‖pp = −
∫ ∞

0

tpdλf (t) = p

∫ ∞
0

tp−1µ[|f | > t]dt

54 (weak Lp = Lp,∞) Define [f ]pp = supt>0 t
pλf (t). Let Lp,∞ = {f ∈ L0 | [f ]pp < ∞},

called the weak Lp.

[cf ]p = |c|[f ]p

[f + g]pp ≤ 2p([f ]pp + [g]pp).

8 Abstract Interpolation Theory

55 (compatible couple / intermediate space) We call a pair on Banach spaces X̃ =

(X0, X1) a compatible couple (or interpolation pair) if there exists a TVS Z such that

X0 ∪ X1 ⊆ Z and the inclusion mappings X0 → Z, X1 → Z are both continuous linear

operators. WLOG: X0 +X1 = Z, where

‖z‖ := inf{‖x0‖X0 + ‖x1‖X1 | x0 ∈ X0, x1 ∈ X1 such that z = x0 + x1}

Denote Z = Σ(X̃), define ∆(X̃) = X0 ∩X1 ⊆ Σ(X̃) with norm ‖z‖ = max{‖z‖X0 , ‖z‖X1}.

If ∆(X̃) ⊆ X ⊆ Σ(X̃) we say X is an intermediate space to X0 and X1.

56 (interpolation pair) Suppose T : Σ(X̃) → Σ(Ỹ ) is a bounded linear operator. We

write T ∈ L(X̃, Ỹ ) provided T (X0) ⊆ Y0 and T (X1) ⊆ Y1 and

‖T |X0‖X0→Y0 ∨ ‖T |X1‖X1→Y1 <∞.

We say that (X, Y ) is an interpolation pair for X̃, Ỹ if

1. X is an intermediate space for X0 and X1

2. Y is an intermediate space for Y0 and Y1

3. whenever T ∈ L(X̃, Ỹ ) then T |X ∈ L(X, Y )

We say (X, Y ) is an exact interpolation pair for X̃, Ỹ if

‖T |X‖X→Y ≤ ‖T |X0‖X0→Y0 ∨ ‖T |X1‖X1→Y1

15



If 0 < t < 1 then we say (X, Y ) is an interpolation pair for X̃, Ỹ of exponent t provided

there exists some C <∞ such that for all T ∈ L(X̃, Ỹ ),

‖T |X‖X→Y ≤ C ‖T |X0‖
1−t
X0→Y0 ‖T |X1‖

t
X1→Y1

Then we can say (X, Y ) is an exact interpolation pair for X̃, Ỹ provided C = 1.

57 (H(X̃)) For complex Banach space X̃ = (X0, X1) let

H(X̃) =

{
f : S → Σ(X̃) |

f is continuous, bounded, and analytic on
∫

(S)=S0

f(is)∈X0, f(1+is)∈X1

sups∈R ‖f(is)‖0<∞, sups∈R ‖f(1+is)‖1<∞

}
where S = {z ∈ C | 0 ≤ <(z) ≤ 1}. Define

‖f‖H(X̃) := sup
s∈S
‖f(is)‖0 ∨ ‖f(1 + is)‖1

Then for any z ∈ S,

‖f(z)‖Σ(X̃) ≤ sup
s∈S
‖f(is)‖Σ(X̃) ∨ ‖f(1 + is)‖Σ(X̃) ≤ ‖f‖H(X̃)

For 0 < t < 1, define

Xt = {x ∈ Σ(X̃) | ∃f ∈ H(X̃) with f(t) = x} ‖x‖t = inf{‖f‖H(X̃) | f(t) = x}

So Xt = H(X̃)/Nt(X̃) where Nt(X̃) = {f ∈ H(X̃) | f(t) = 0}.

Theroem: X̃ = (X0, X1) and Ỹ = (Y0, Y1) compatible, then for 0 < t < 1, (Xt, Yt) is an

exact interpolation space of exponent t between X̃ and Ỹ .

Theorem: Let X0 = Lp0(µ), X1 = Lp1(µ) for 1 ≤ p0, p1 ≤ ∞ be complex spaces. Let
1
pt

= 1−t
p0

+ t
p1

. Then Lpt(µ) = Xt with equality of norms.

Note: For real Lp we get the same theorem, except exactness must be removed.

58 (Riesz-Thorin) If 1 ≤ p0, p1 ≤ ∞, 1 ≤ q0, q1 ≤ ∞ and 0 < t < 1 with

1

pt
:=

t

p0

+
1− t
p1

1

qt
:=

t

q0

+
1− t
q1

Suppose X0 = Lp0(µ), X0 = Lp1(µ) and Y0 = Lq0(ν), Y1 = Lq1(ν) (compatible couple).
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Then for 0 < t < 1, Lpt(µ) + Lqt(ν) is an exact interpolation pair for X̃ = (X0, X1), Ỹ =

(Y0, Y1).

59 (Marcinkiewicz Interpolation) Let (X,M, µ) be a measure space and D a subspace

of L0(µ). We say T : D → L0(ν) is sublinear if

1. |T (f + g)| ≤ |Tf |+ |Tg|
2. |T (cf)| = c|Tf | if c ≥ 0

T is said to be of strong type (p, q) if T (Lp(µ)) ⊆ Lq(ν) and ‖T |Lp(µ)‖Lp(µ)→Lq(ν) <∞.

T is said to be of weak type (p, q) if T (Lp(µ)) ⊆ Lq,∞(ν) and ‖T |Lp(µ)‖Lp(µ)→Lq,∞(ν) =:

sup‖x‖Lp(µ)≤1[Tx]q,∞ < ∞ where for q < ∞, Lq,∞(ν) = {f ∈ L0(ν) | supt t
1/qν[|f | > t] =:

[f ]q,∞ <∞}.

Weak type (p,∞) is the same as strong type (p,∞).

Marcinkiewicz Interpolation Theorem: 1 ≤ p0 ≤ q0 ≤ ∞ and 1 ≤ p1 ≤ q1 ≤ ∞,

q0 6= q1 and 0 < t < 1,

1

pt
:=

1− t
p0

+
t

p1

1

qt
:=

1− t
q0

+
t

q1

If T : Lp0(µ)+Lp1(µ)→ L0(ν) is sublinear, and is of weak type (p0, q0 and weak type (p1, q1)

then T is of strong type (pt, qt) for all 0 < t < 1 and

‖T‖Lpt→Lqt ≤
C
(
‖T‖Lp0→Lp0,∞ ∨ ‖T‖Lp1→Lp1,∞

)
t(1− t)

where C = C(p0, p1, q0, q1) is some constant <∞.

9 Baire σ-algebra

60 (Baire σ-algebra) Define Ba(X) = σ{[f > a] | a ∈ R, f ∈ C(x)} = σ{[f > 0] | f ∈
C(X)}. If X is metrizable, then the Baire set is equal to the Borel set.

Lemma: If X is normal, then

Ba(X) = σ{ open Fσ set } = σ{ closed Gδ sets } = σ{E | E is both Fσ and Gδ}

Let M(X) be all finite Baire signed measures on X. We have a norm ‖µ‖var = |µ|(X) =

µ+(X) + µ−(X).
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Define J : M(X) → C(X)∗ by J(µ)(f) =
∫
X
f(x)dµ(x). Then J is a linear mapping into

C(X)∗. In fact, J is an isometric isomorphism and is surjective.

61 (Boolean) Suppose (X, τ) is compact Hausdorff. TFAE:

1. X is Boolean (i.e. X has a base of clopen sets

2. The continuous simple functions are dense in C(X)

Cl(X) = {E ⊆ X | E is clopen }
S(X) = continuous simple functions = span{χE | E ∈ Cl(X)}.

3. ∀x 6= y, there exists a clopen U such that x ∈ U, y ∈ UC

4. X is homeomorphic to a closed subset of {0, 1}B for some B

5. X is totally disconnected

10 Regularity Properties of Measures

62 (regular) A measure µ on X is innerregular if ∀E ∈M,

µ(E) = sup{µ(K) | K ⊆ E compact K ∈M}

A measure µ on X is outerregular if ∀E ∈M,

µ(E) = inf{µ(U) | E ⊆ U open U ∈M}

We say µ is regular if it is both inner and outer regular.

If µ is a finite signed measure, we say µ is regular if both µ+ and µ− are regular (⇔ |µ| is

regular).

Theorem: If X is compact and Hausdorff, then if µ is a finite Baire measure, µ is regular.

Corollary: Suppose (X, T ) is a LCTVS and K ⊆ X is weakly compact, x0 ∈ conv(K).

Then x0 is the Baray center of a Baire probability measure on K. That is, ∀x∗ ∈ X∗,

〈x∗x0〉 =
∫
K
〈x∗, x〉dµ(x).

63 (dual of C(X)) If X is compact and Hausdorff, then

C(X)∗ = { finite signed regular Borel measures }

64 (Krein-Milman) If C is a convex set in a real vector space, then x ∈ C is said to
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be an extreme point provided whenever y, z ∈ C and 0 < λ < 1, x = λy + (1 − λ)z then

x = y = z.

Krein-Milman Lemma: If X is a Hausdorff LCTVS, and C ⊆ X is a non-empty,

compact, convex set then ext(C) 6= ∅.

Krein-Milman Theorem: If X is a Hausdorff LCTVS, C ⊆ X is a non-empty, compact,

convex set, then C = conv(ext(C)), where ext(C) = { all extreme points of C }.

Remark 1: If X is a reflexive Banach spac, then BX is weakly compact, hence BX =

conv(ext(BX))
weak

= conv(ext(BX))
norm

.

Remark 2: Suppose X is a normed space. BX∗ is weak*-compact so Krein-Milman implies

BX∗ = conv(ext(BX∗))
weak*

.

65 (examples of extreme points) ex. If K is compact and Hausdorff, then f ∈
ext(BC(K)) ⇔ ‖f‖ = 1 and |f | ≡ 1.

ex. see examples from HW

66 (extreme points of C(K)) Proposition: conv(ext(BCC(K))) = BCC(K) ⇔ K is

Boolean.

Theorem: If K is compact and Hausdorff, then BCC(K) = conv(ext(BCC(K))).

Proposition: If K is compact and Hausdorff, then ext(BC(K)∗) = {αδk | k ∈ K, |α| = 1}.

67 (Banach-Stone) Suppose K1, K2 are compact Hausdorff. Then C(K1) is isometrically

isomorphic to C(K2) if and only if K1 is homeomorphic to K2.

68 (Milman) If X is Hausdorff LCTVS and M ⊆ X is compact with C = conv(M)

compact. Then ext(C) ⊆M .

69 (Kakatani fixed point theorem) We say T is an affine transformation if T (αx +

(1− α)y) = αTx+ (1− α)Ty for 0 ≤ α ≤ 1, x, y ∈ K.

G is equicontinuous if for all neighborhoods U of 0, there exists a neighborhood V of 0 such

that for x, y ∈ K, if x− y ∈ V then for all T ∈ G, Tx− Ty ∈ U .

We call p a fixed point of G if G(p) = {Tp | T ∈ G} = {p}.

Theorem: Suppose X is a LCTVS and K ⊆ X is convex compact, and G is an equicontin-

uous group (under composition) of affine transformations on K. Then G has a fixed point.

70 (Haar measure) If G is a group and T is a topology, then (G, T ) is a topological

group if G×G→ G, (g1, g2) 7→ g1g
−1
2 is continuous.

Note that this implies that (g1, g2) 7→ g1g2 and g 7→ g−1 are continuous.
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Theorem: If (G, T ) is locally compact, then there exists a Biare measure µ on G such

that

1. µ(K) <∞ for all K ∈ Ba(G)

2. µ(O) > 0 is O is non-empty and open

3. µ(xE) = µ(E) for every E ∈ Ba(G) and x ∈ G (that is, µ is left-invariant)

Moreover, this µ is unique and is also right invariant (i.e. µ(Ex) = µ(E))

If (G, T ) is compact, then we can also get µ(G) = 1.

71 (convex hull of compact dudes) Theorem: If X is a Banach space and C ⊆ X

is weakly compact, then conv(C) is weakly compact.

Theorem: If X is a Banach space and C ⊆ X is closed, TFAE:

1. C is compact

2. there exists (xn) in X such that ‖xn‖ → 0 and C ⊆ conv(xn)
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