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The propositions and theorems marked with a * indicate that the proof was important and
relatively short, and thus should be learned for exams. Definitions are shown in blue while
theorems are shown in purple.

1 Topology

1 (topology, open sets) Given a set X, 7 C P(X) is a topology if

1.0, XeT
2.0VeT=UnNVeT
3. {Ustacua €T = UpedUs €T

The elements of the topology are called the open sets. A set C' is called closed if C is open.

ex. If (X,d) is a metric space, then U C X is open < Vo € U, Ir > 0 such that
B(z,r) CU.

We call T = {0, X} the indiscrete (or trivial) topology.
We call T = P(X) the discrete topology.
If Y C X, the relative topology is Ty ={ONY | O € T}.

2 (closure, interior, boundary) For an arbitrary A C X, let A denote the smallest
closed set containing A, called the closure

Z:ﬂ{CQX|A§CandC’isclosed}.

We let the interior of A, A°, be the largest open set contained in A:

A°=|J{OC X |0 C Aand O is open }.

The boundary of A, §A is §A = A\ A°.

3 (limit point) We say p is a limit point (or accumulation point) of A provided for every
open set O 3 p, (O N A)\{p} # 0. We let A" = acc(A) = {limit points of A}.

Proposition: A = AUacc(A). Thus, A is closed < acc(A) C A< A = A.

4 (local base, base) For z € X, a family B, C T is called a base for T at = (or a local
base at z) provided

1. VU € B,z €U



2. YO € T such that x € O, U € B, such that U C O.

A base for T is a family B C T such that for all x € X, B, = {0 € B | x € O} is a base for
T at x.

S C T is a subbase for the topology provided the set of all finite intersections of elements is
a base.

Theorem: TFAE:

1. B is a base

2. every open set is the union of sets in B

3. each x € X is contained in some V € B and if U,V € B and x € U NV then there
exists some W € Bsuch that t e W CUNV

Theorem: The topology generated by & C P(X) contains (), X and all unions of finite
intersections of elements in &.

5 (product topology) Suppose (Xa, Ta)aca are topological spaces and let X = T e 4 X,
For a € A, let 7, be the projection from X onto X,, and set

S={r'(0)]0€Ty,ac A}

Then § is a subbase for the product topology.

Proposition: For X = II,c4X, and z, € X, then z,, —» z in X & 7,(z,) = z,(a) —
z(a) = mo(x) for all o € A.

6 (first/second countable) (X,T) is first countable provided Yz € X, there exists a
countable base at z.

(X, T) is second countable provided there is a countable base for 7.

Proposition: If X is second countable, then X is separable. The converse is true in metric
spaces.

7 (convergence in a topological space) For a topological space (X, 7) and a sequence
{z,} C X, p € X wesay {z,} converges to p (z,, — p) provided for every open O € T with
p € O, AN such that Vn > N, x,, € O.

Note: limits need not be unique.

Proposition: Suppose X is first countable, A C X, p € X. Then p € A & 3 sequence
{z,} in A such that x, — p.

8 (cofinite and cocountable topologies) The cofinite topology is



T ={0 C X | O° is finite}.

The cocountable topology is

T ={0 C X | O° is countable}.

9 (T1/T2/T3/T4)

e T1-Vze X, {z} is closed

e T2 (Hausdorff) - Vo # y in X, there exists O,, O, € T such that z € O,, y € O, and
0,.N0, =10

e T3 (regular) - (X,7) is T1 and for all z € X, closed C' with = ¢ C, there exists open
UVeTsuchthat z e U, CCV,andUNV =)

e T4 (normal) - (X,7) is T1 and for all disjoint closed sets A, B there exists open U,V
with ACU,BCVandUNV =0

Fact: T4=T3=T2=T1.
10 (continuous (at z)) Let (X,7T),(Y,0) be topological spaces. We say the function

f: X — Y is continuous at x € X if for every open O € ¢ with f(z) € O, there exists an
open U € T with z € U such that f(U) C O.

f is continuous if for every x € X, f is continuous at x.

Proposition: TFAE for f: X =Y

1. f is continuous

2. for every open O in Y, f~}(O) is open in X

3. for every closed C in Y, f~1(C) is closed in X

4. there is a subbase S for Y such that for every O € S, f71(0O) is open in X

11 (weak topology) For topological spaces (X4, Ta)aca and functions f : X — X, from a
set X. Then W ((fa)aca) is the weakest (smallest) topology on X making each f continuous.

This topology is generated by sets of the form f;1(U,) where a € A and U, is open in X,.x

12 (product space theorems) Theorem 1: If X, is Hausdorff for each a € A, then
X = Il,eqX, is Hausdorff.

Theorem 2: If X, and Y are topological spaces and X = IIX, then f : Y — X is
continuous IFF 7, o f is continuous for each «.



Theorem 3: If X is a topological space, A is a nonempty set, and {f,} is a sequence in
X4 then f, — f in the product topology IFF f,, — f pointwise.

13 (C'(X)) For a topological space (X, T), let C'(X) be the set of all R-valued continuous
functions f: X — R.

Let Cy(X) = BC(X) be all R-valued bounded, continuous functions f : X — R. We equip
Cy(X) with the norm || f|lec = sup,cx |f(x)].

Let /o (X) be the set of all R-valued bounded functions.
Theorem: If X is normal then the topology on X is W (C,(X)).

14 (Urysohn’s Lemma) Let (X,7) be normal. If A, B are disjoint closed sets and a # b
in R. Then there exists some f € C(X, |[a,b]) such that f|4 = a and f|p = b.

proof uses nastay lemma

15 (Tiktze Theorem) Version 1: Let (X,7) be normal. If A C X is closed and
f € C(A,(a,b)) then there exists some F' € C(X, [a,b]) such that F|4 = f.

Version 2: Let (X,7) be normal. If A C X is closed and f € C(A, (a,b)) then there
exists some F' € C'(X,R) such that F|4 = f.

X is called completely regular (or a Ty space) if X is T} and for each closed A C X, x ¢ A
there exists some f € C'(X,[0,1]) such that f(z) =1, f =0 on A.

2 Nets

16 (net) (D, <) is called a directed set if

o a<aqa
eifa<bandb<cthena<c
e Vo, € D, 3y € D such that a <, 8 <

A net in X is a function from a directed set into X.

For {z4}aca a net and oy € A, the tail of the net is T, = {z | @ € A, a > ap}.

17 (further net definitions) We say a net {z,} is frequently in a set C'if T, N C # 0
for all o € A.

We say a net {z,} is eventually in a set C' if there exists some ag € A such that T, C C'.

(Note: eventually in C' = frequently in C')



Suppose {4 }taca is a net in the topological space X, and p € X. Then z, — p means for
every open set O with p € O, {x,} is eventualy in O.

We say p is a cluster point of the net if for every open set O 3 p the net {z,} is frequently
in O.

We say {ys}sep is a subnet of {z,} provided there exists some h : B — A such that

e Yoy € A, 36y € B such that for all > Sy, h(8) > ag
o 153 =yp forall 3 € B

ex. For1,2,3,4,... then 2,1,3,2,4,3,5,4,... is a subnet but not a subsequence

Theorem: For a net {z,} in (X,7) TFAE:

1. z is a cluster point of {z,}
2. there exists a subnet {yz} of {z,} such that ys — x

Theorem: f is continuous at z < for all nets x, — z, f(z,) — f(2)

Theorem: For D C X, p € D < there exists a net 2, in D s.t. z, — .

3 Compactness

18 (notions of compactness)

1. A is compact i.e. every open cover has a finite subcover

1’. every family of closed sets with the finite intersection property has a non-empty
intersection

2. X is sequentially compact if every sequence has a convergent subsequence.

3. X is countable compact if every countable open cover has a finite subcover.

3. If C; D Cy D ... are closed and non-empty then NC,, # ()
4. every infinite subset of X has a limit point

l.el. =3 and2. = 3. & 3. = 4.
Theorem: If X is compact and C' C X is closed, then C' is compact.
Theorem: If X is Hausdorff, then compact sets are also closed.

Theorem: If f: X — Y is continuous and C' C X is compact then f(C') is compact.

19 (net compactness) We call a net {z,} universal if for all Y C X, if the net is
frequently in Y then the net is eventually in Y.

Lemma: every net has a universal subnet.



Theorem: For a topological space (X, 7), TFAE:

X is compact
every net in X has a cluster point
every net in X has a convergent subnet

W

every universal net in X converges

20 (locally compact) A topological space is called locally compact if every point has a
compact neighborhood. Locally compact Hausdorff spaces are abbreviated LCH.

Equivalently, every point has an open neighborhood U with closure U compact.

21 (Tychonoff Theorem) If (X,) are compact topological spaces, then X = Il 4 X,
(with the product topology) is compact.

Theorem: Axiom of Choice < Tychonoff

22 (equicontinuous) Let (X,7T) be a topological space, 7 C C(X,(Z,]|-||)). Forz € X

we say J is equicontinuous at z provided for all € > 0 there exists some neighborhood U, of
x such that

sup sup || f(z) — f(y)l| < e
feTJ yeUs

We say J is equicontinuous if it is equicontinuous at x for all x € X.

We say J is pointwise bounded if for all z € X, sup; 7 || f(z)| < oo.

23 (Arzela-Ascoli) We say a metric space X is totally bounded if for any » > 0, X can
be covered by a finite number of balls of radius 7.

Arzela-Ascoli Let X be a compact Hausdorff space. If F is an equicontinuous, pointwise
bounded subset of C(X) then F is totally bounded in the uniform metric and the closure of
F in C(X) is compact.

Alternative version 1: Let X be a o-compact LCH space. If {f,} is an equicontinuous,
pointwise bounded sequence in C(X), then there exists a f € C(X) and a subsequence of
{fn} that converges to f uniformly on compact sets.

Alternative version 2: Let X be compact and F C C(X). Then F is compact in C(X)
IFF

1. F is equicontinuous
2. F is pointwise bounded

24 (Stone-Weierstrass) A is called an algebra if it is a real vector subspace of C'(X)
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such that fg € A whenever f, g € A.

Let X be a compact, Hausdorff space and B C C(X,R) a subalgebra such that B separates
points (that is, for  # y,3f € B with f(x) # f( )). Then if there exists some xy € X such
that f(zo) = 0 for all f € B, then B = {f € C(X,R) | f(xo) = 0}. Otherwise, B = C(X).

4 Normed Spaces

25 (complete) A Banach space is a complete normed vector space. It is called complete
if every Cauchy sequence converges in X.

Theorem: X is complete < when Y _ ||z,|| < oo then (22[21 T,)N converges in X

neN |

26 (linear equivalences) If X Y are normed spaces and T : X — Y is linear, then
TFAE:

1. T is continuous
2. T is continuous at 0
3. T is bounded

that is, there exists some ¢ > 0 such that [|[Tz|| < c[|z||.

Equivalently, sup, < [|Tz]| < oo
4. T is Lipschitz

that is, there exists some ¢ such that |7z — Ty|| < ||z — y|

We denote L(X,Y) = {T : X — Y | T is continuous and linear} with norm [|T] =
SUp||z <1 || 72| Let X* = L(X,R) be the dual of X.

27 (invertibility) Suppose X is a Banach algebra with identity, ||| = 1. Then

if ||[I — al] <1 then a is invertible and [la™!|| < m

if y is invertible and ||y — z|| < m then z is invertible (so invertible elements are open)

5 Quotient Spaces

28 (algebra quotient) If X is a normed space and M C X is a closed subspace, then
X/M = {x+ M | z € X} is the algebra quotient with (z + M) + (y + M) = (z +y) + M.
We have the linear surjection



o X = X/M
z—x+ M

where ker(my;) = M. Put the norm on X/M to be

|le+ M| =inf{|ly|| | y € x + M} = inf{||]x —m]| | m € M} = dist(z, M)

If M is not closed, this is merely a seminorm. Then 7/(Bx(1,0)) = Bx/n(0,1) so my is
continuous and ||my || = 1.

29 (Hahn-Banach) For a real vector space X, we say p : X — R is a sublinear mapping
if p(z +vy) < p(x) + p(y) and p(Az) = Ap(z) when A > 0.

Hahn-Banach: Let X be a real vector space, p a sublinear functional on X, M a subspace
of X, and f a linear functional on M such that f|y; < ply. Then there exists a linear
functional F' on X such that FF < pon X and F|y = f.

For the complex case, we require |f(z)| < p(z) and we get |F(z)| < p(z).

30 (Applications of Hahn-Banach)

1. If M is a closed subspace of X and z € X M then there exists f € X* such that
f(z) #0and f|y = 0. In fact, if 6 = inf e ||z —yl|, f can be taken to satisfy || f]| = 1
and f(x) =9.

2. If © £ 0 € X, there exists f € X* such that || f|| =1 and f(z) = ||z||

3. The bounded linear functionals on X separate points

31 (reflexive) Theorem: If z € X, define & : X* — C by z(f) = f(x). Then the map
x +— 2 is a linear isometry from X into X**.

We call X reflexive if X** = X. Equivalently, X is reflexive if "is surjective.

Theorem: Suppose X is a Banach space and M is a closed subspace. Then

1. X is reflexive = M is reflexive

2. X reflexive & X™ reflexive

3. X reflexive = X/M reflexive

4. X reflexive & Bx(0, 1) is weakly compact

32 (Baire Category) We say C is nowhere dense if (C')° = 0.

Theorem: Let X be a complete metric space. Then if {U,} is a sequence of open dense
sets, NU, is dense. Thus, X is not a countable union of nowhere dense sets.
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A set that is a countable union of nowhere dense sets is said to be of first category (and it’s
complement is called residual). A set which is not a countable union of nowhere dense sets
is called second category.

33 (uniform boundedness principle) Let X be a Banach space and Y a normed space,
S C L(X,Y) where S is pointwise bounded (i.e. Vo € X,sup{||Tz| | T € S} < 0).

Then S is uniformly bounded (i.e. suppcg ||T]| < oo.

34 (Banach-Steinhaus) Suppose X is a Banach space and Y is a normed space, and
{T,} CL(X,)Y)and forallz € X, T,x - Tz in Y. Then T € L(X,Y).

35 (open mapping theorem) little open mapping theorem: Suppose X is a Banach
space and Y is a normed space, T' € L(X,Y) and r > 0. Then if T(B(0,1)) 2 B(0,r) then
T(B(0,1)) 2 B(0,7).

open mapping theorem: Suppose X,Y are Banach spaces and T' € L(X,Y) is surjective.
Then T is an open mapping.

Remark: For a linear map 7', T' is open < 3r > 0 such that 7(B(0,1)) D B(0,r).

36 (closed graph) For Banach spaces X,Y and T : X — Y linear, then 7' C X x Y is
closed < T is a bounded linear operator.

6 Topological Vector Spaces

37 (TVS) Let X be a vector space, T a topology on X. Then (X,7T) is a TVS provided

e +: X x X — X is continuous
o - :R x X — X is continuous

ex. normed spaces under the weak topology w(X™*).

We say the TVS (X, T) is locally convex there exists a local base for T consisting of convex
sets.

Theorem: If (X,7) is a locally convex TVS, then there exists seminorms {p, | « € A}
such that 7 = w(pa,).

38 (gauge function) Define the gauge function (or Minkowski) of a convex set U in the
vector space X to be

Py(z) = inf{\ > 0| § e U}

11



We say p is an internal point of U (that is, Vy € X, Je > 0 such that p+ [|z| < €ly CU). If
0 is an interval point, then the gauge function is defined since the set is non-empty. Then

2. Py(z+y) < Py(z) + Pu(y)
3. If U is balanced, then Py(Az) = |A|Py(x)

39 (Separation Theorem / Geometric Hahn-Banach) Say X is a LCTVS over R
and U,C C X are convex sets such that U N C = () and U° # (). Then there exists some
non-zero f € X* and some « € R such that U C [f < o] and C C [f > @]

Corollary 1: If (X,7) is Hausdorff LCTVS, then X* separates points of X

—weak

Corollary 2: If (X,7) is a LCTVS, C C X is convex, then C -7

Corollary 3: If X is a normed space and A C X, then A is norm bounded < A is weakly
bounded (where A is weakly bounded if for all 2* € X*, sup,cy [(z*, )| < 00

40 (topologies on X*) On X* we have three topologies:

weak*(w(X)) C weak(w(X**)) C norm topology

Where the first is the topology of pointwise convergence on X and the first C is equality if
X is reflexive.

41 (Banach-Alaoglu) If X is a normed space, then By = {a* € X* | ||lz*|| < 1} is
weak*-compact.

Corollary: If X is reflexive, then By« is weakly compact.

X is reflexive if and only if By is weakly compact.

42 (Goldstine) Suppose X is normed. Then é} is weak*-dense in Byx, é;( C By~
where we have equality IFF X is reflexive.

43 (random theorems) Theorem 1: Suppose X is a normed space.

1. There exists a compact Hausdorff space K such that X is isometrically isomorphic to
a subspace of C'(X).
2. If X is separable, K can be taken to be a compact metric space

Moreover, if X is separable, K can be taken to be the Cantor set {0, 1} or [0, 1].
Theorem 2: If X is a normed space, (Bx~, weak™) is metrizable < X is separable.

44 (completely regular) F C C(X) is said to separate points from closed sets proved
for all z € X and closed set C' C X with = ¢ C, then there exists some f € F such that

f(x) & F(C).

12



If C(X) separates points from closed sets, X is said to be completely regular.
Proposition If (X, 7T) is completely regular, then 7 = w(C(X)) = w(C(X, [0, 1])).

7 LP spaces

45 (LP(;1)) For 0 < p < oo, let LP = { real-valued measurable functions f | [ |f[Pdp < oo}
with ||, = ([ |f|pd,u)1/p. This is a norm for 1 < p < co.

Let L* = { all bounded measurable functions } with supremum norm defined by

1l = mf{ sup |£(@)] | u(E) = o} T

xeEC heL> h=0a.e.

46 (Riesz-Fisher) For 1 < p < oo, L is complete

47 (Holder’s inequality) Let g be the conjugate exponent of p so %%—% =1(ie ¢g= p%l)

For measurable f, g and 1 < p < oo then || fgll1 < | f]loll9]l4-

If fe LP and g € L?if and only if f =0 a.e. OR g =0 a.e. OR |f|? is a scalar multiple of
|97,

If f € LP then || f||, = max { [ fgdu | [|glly <1} (maximum is achieved! by g = sgn(f)).

Alternate Holder’s inequality: For 0 < A < 1, then [ [f[*g]'™ < (f \f])’\ (f |g|)1_/\.
48 (Minkowski) For 1 <p < oo, [|f +gll, < [[fll, + 9,

49 (simple functions in 1”) Let X be all measurable simple functions supported on sets
of finite measure. Then ¥ is dense in L? for 0 < p < oo.

Continuation of Holder: Assume p is o-finite, 1 < ¢ < 0o and g is measurable. Then

lglly = sup{ [ fg [ Ifll, <1, f € X}

If 41 is semifinite (i.e. if u(A) = oo then 3B C A such that 0 < pu(B) < 00) then [|g|l =
sup{[ fg [ [fllL < 1. f €%}

50 (dual of L”) For 1 < p < oo and q the conjugate exponent of p, then there is a mapping
Jp+ LT — (R)* defined via J,(9)(f) = [ fg < llgllgll f]l,-

So Jy(g) is linear and |[J(9)l| )+ < [lgllq-

Moreover, J, is linear, so J, is a linear operator which maps L onto (L*)* and ||.J,|| < 1.
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Theorem: J, is surjective if 1 < p < oo and J; is surjective if p is o-finite.

Corollary: For 1 < p < oo, then LP is reflexive.

51 (relations between L? as p varies) Theorem 1: If y(X)<ooand0<p<r < oo
then if f is measurable, || f]|, < w(X)z" 7| f]|,

Theorem 2: If p is the counting measure, then for 0 < p < r < oo, ||fll, = |Ifll-
Therefore, /7 C (7.

Theorem 3: If0<p<q<7“§ooand%:)\%+(1—)\)%then

11y < WA

52 (inequalities) Chebychev’s inequality: For f € L? for 0 < p < oo and any « > 0,

oPullf] > a] < | fIIP

Theorem: For o-finite measure spaces (X, M, p) and (Y, N,v) and K : X XY — R define

(T )y /ny 2)dp(x)

Suppose there exists ¢ such that [, |K(x,y)|du(z) < c and [, |K(z,y)|dv(y) < ¢ and K is
px v measurable. Then Tk maps LP () into Li(v) for all 1 < p < oo, and || Tk || Lr()—ra() <
c.

53 (Distribution functions) Define the total distribution function of f € L° via

Ag +[0,00) = [0, o0]
t= pllfl > 1
Proposition:
1. A is decreasing and right continuous
2. |fl <lg| implies Ay < A,
3. If | ful 1| f| a.e. then A, T Ay
4 Agenlt) € Ay (t/2) + M(t/2)

Theorem: Take ¢ : (0,00) — Rt Borel measurable and A(t) < oo for all ¢ > 0. Then

14



fX |f|dﬂ__fo d)‘f )

1= - / (1) = p / L] > fde

54 (weak L’ = L’>) Define [f]b = sup,.otPAs(t). Let LP>® = {f € L° | [f]} < oo},
called the weak LP.

[cflp = lcl[f]p
Lf + glb < 2P([f15 + [g]h).

8 Abstract Interpolation Theory

55 (compatible couple / intermediate space) We call a pair on Banach spaces X =
(Xo,X1) a compatible couple (or interpolation pair) if there exists a TVS Z such that
XoU X; € Z and the inclusion mappings Xy — Z, X; — Z are both continuous linear
operators. WLOG: Xy + X; = Z, where

|z == inf{||zo||lx, + llz1]lx, | o € Xo, 21 € X7 such that z = zg + 21}

Denote Z = $(X), define A(X) = Xo N X; € 2(X) with norm ||z]| = max{ ||z xo, || 2|l x, }-
If A(X)C X C %(X) we say X is an intermediate space to X, and X;.

56 (interpolation pair) Suppose T : ¥(X X) — 2(Y) is a bounded linear operator. We
write T' € L(X,Y) provided T'(X() C Yy and T'(X;) C Y] and

1T %0l x0ve V 1T x0 Ml x, oy, < 00
We say that (X,Y’) is an interpolation pair for X,V if
1. X is an intermediate space for X, and X;

2. Y is an intermediate space for Yy and Y3
3. whenever T' € L(X,Y) then T|x € L(X,Y)

We say (X,Y) is an exact interpolation pair for X,V if

”T|X||X—>Y < ||T|Xo||X0—>Y0 N ||T|X1 HX1—>Y1
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If 0 <t < 1 then we say (X,Y) is an interpolation pair for X , Y of exponent t provided
there exists some C' < oo such that for all 7' € L(X,Y),

IT1x 0 x oy < CUT1xollxg v 1T 1 s, ome
Then we can say (X,Y) is an exact interpolation pair for X,Y provided C' = 1.

57 (H(X)) For complex Banach space X = (X, X;) let

~ ~ f is continuous, bounded, and analytic on f(S):SO
H(X) = {f S — X(X) | flis)€Xo, f(1+is)EXy }

supser [f(is)lo<o0, sup,ep [[f(1+is)[l1<oo

where S = {z € C| 0 < R(z) < 1}. Define

1y z) = sup 1 (@s)llo Vv ILF (1 +is) |

Then for any z € S,

1f sz <Supllf(w)llz(;qv||f(1+28)||z<x < [ f gz

For 0 <t < 1, define

= {z e %(X) | 3f € H(X) with f(t) =} lelle = inf{[ fll3y%) | f(t) = 2}

So X, = H(X)/N,(X) where N,(X) = {f € H(X) | f(t) = 0}.

Theroem: X = (X, X;) and Y = (Yp, Y)) compatible, then for 0 < ¢ <1, (X;,Y;) is an
exact interpolation space of exponent ¢t between X and Y.

Theorem: Let Xy = LP(u), X7 = LP(u) for 1 < pg,p1 < 0o be complex spaces. Let

plt = % + pil. Then LP*(u) = X; with equality of norms.

Note: For real LP we get the same theorem, except exactness must be removed.

58 (Riesz-Thorin) If 1 < pg,p; <00, 1< qo, 1 < o0 and 0 <t < 1 with

1 t 1—t 1 t 1—-t

Dt Po b1 qt qo q1

Suppose Xo = LP(u), Xo = LP*(p) and Yy = L®(v), Yy = L9 (v) (compatible couple).
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Then for 0 < t < 1, LP(u) + L%(v) is an exact interpolation pair for X = (Xg, X;),Y =
(Yo, Y1).

59 (Marcinkiewicz Interpolation) Let (X, M, ) be a measure space and D a subspace
of L%(u). We say T : D — L°(v) is sublinear if

LAT(f +9)l <ITf[ +[Ty]
2. T(cf)| =T f|ifc>0

T is said to be of strong type (p, q) if T(LP(u)) € LU (v) and ||| ze(w || e ()= L) < 00

T is said to be of weak type (p,q) if T(LP(n)) € L2®(v) and ||T|zr(w|lcr(my—ra=@w) =:
SUD ) 1oy <1 [L Tlgo0 < 00 Where for ¢ < oo, L?®(v) = {f € L°(v) | sup, Y| f| > t] =
[flge0 < 00}

Weak type (p, 00) is the same as strong type (p, 00).
Marcinkiewicz Interpolation Theorem: 1 < py < gy <ocand1l < p; < ¢ < o0,
qgo#qrand 0 <t <1,

11—t ¢t 11—t t

P Do D % ¢

If T : LPo(p) + LP* (1) — LO(v) is sublinear, and is of weak type (po, go and weak type (p1, q1)
then T is of strong type (p¢, q;) for all 0 <t < 1 and

C(IT Mg prnoe VTl gm0 )
=)

||THLPt—>L‘1t S

where C' = C(po, p1, 90, 1) 18 some constant < oc.

9 Baire o-algebra

60 (Baire o-algebra) Define Ba(X) =o{[f >a] |a e R, f € C(x)} =c{[f >0] | f €
C(X)}. If X is metrizable, then the Baire set is equal to the Borel set.

Lemma: If X is normal, then
Ba(X) = o{ open F, set } = of closed G sets } = o{F | E is both F, and Gs}

Let M(X) be all finite Baire signed measures on X. We have a norm ||p]|ver = |p|(X) =
P (X) + pm (X).
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Define J : M(X) — C(X)* by J(u)(f) = [y f(z)du(z). Then J is a linear mapping into
C(X)*. In fact, J is an isometric isomorphism and is surjective.

61 (Boolean) Suppose (X, 7) is compact Hausdorff. TFAE:

1. X is Boolean (i.e. X has a base of clopen sets
2. The continuous simple functions are dense in C'(X)

Cl(X)={E C X | E is clopen }

S(X) = continuous simple functions = span{Xg | E € CI(X)}.
3. Va # y, there exists a clopen U such that x € U,y € U®
X is homeomorphic to a closed subset of {0, 1} for some B
5. X is totally disconnected

>

10 Regularity Properties of Measures

62 (regular) A measure g on X is innerregular if VE € M,

w(E) =sup{u(K) | K C E compact K € M}

A measure p on X is outerregular if VE € M,

w(E) =inf{u(U) | E CU open U e M}

We say p is regular if it is both inner and outer regular.

If u is a finite signed measure, we say p is regular if both pu* and p~ are regular (< |u| is
regular).

Theorem: If X is compact and Hausdorff, then if x4 is a finite Baire measure, pu is regular.

Corollary: Suppose (X,7T) is a LCTVS and K C X is weakly compact, zo € conv(K).
Then z( is the Baray center of a Baire probability measure on K. That is, Vz* € X*,

(x*wo) = [ (@*, x)du(z).

63 (dual of C'(X)) If X is compact and Hausdorff, then

C(X)* = { finite signed regular Borel measures }

64 (Krein-Milman) If C is a convex set in a real vector space, then x € C' is said to
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be an extreme point provided whenever y,z € C and 0 < A < 1, x = Ay + (1 — \)z then
r=y=2=z.

Krein-Milman Lemma: If X is a Hausdorff LCTVS, and C' C X is a non-empty,
compact, convex set then ext(C') # 0.

Krein-Milman Theorem: If X is a Hausdorftf LCTVS, C' C X is a non-empty, compact,
convex set, then C' = conv(ext(C')), where ext(C') = { all extreme points of C' }.

Remark 1: If X is a reflexive Banach spac, then By is weakly compact, hence By =

norm

weak

conv(ext(Bx)) = conv(ext(Bx))

Remark 2: Suppose X is a normed space. By« is weak*-compact so Krein-Milman implies

weak

Bx+ = conv(ext(Bx+))

65 (examples of extreme points) ex. If K is compact and Hausdorff, then f €
ext(Bow)) € ||fll=1and |f| = 1.

ex. see examples from HW

66 (extreme points of C'(K)) Proposition: conv(ext(Be.(x))) = Beox) & K is
Boolean.

Theorem: If K is compact and Hausdorff, then Be.. (k) = conv(ext(Bee(k)))-

Proposition: If K is compact and Hausdorff, then ext(Be(xy-) = {adi | k € K, |af = 1}.

67 (Banach-Stone) Suppose K, K, are compact Hausdorff. Then C'(K7) is isometrically
isomorphic to C(Ks) if and only if K is homeomorphic to K.

68 (Milman) If X is Hausdorff LCTVS and M C X is compact with C' = conv(M)
compact. Then ext(C) C M.

69 (Kakatani fixed point theorem) We say T is an affine transformation if T'(az +
(l-—a)y)=aTlz+(1—-—a)Tyfor0<a<l1,z,yeK.

G is equicontinuous if for all neighborhoods U of 0, there exists a neighborhood V' of 0 such
that for x,y € K, ifx —y €V thenforall T e G, Tx — Ty € U.

We call p a fixed point of G if G(p) ={Tp | T € G} = {p}.

Theorem: Suppose X is a LCTVS and K C X is convex compact, and G is an equicontin-
uous group (under composition) of affine transformations on K. Then G has a fixed point.

70 (Haar measure) If G is a group and 7 is a topology, then (G,7) is a topological
group if G x G — G, (g1, 92) — 9195+ is continuous.

Note that this implies that (g1, g2) = ¢g1g2 and g — g~* are continuous.
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Theorem: If (G,T) is locally compact, then there exists a Biare measure p on G such
that

1. p(K) < oo for all K € Ba(G)

2. u(O) > 01is O is non-empty and open

3. u(zE) = pu(E) for every E € Ba(G) and = € G (that is, p is left-invariant)
Moreover, this 4 is unique and is also right invariant (i.e. p(Ex) = u(E))

If (G, T) is compact, then we can also get u(G) = 1.

71 (convex hull of compact dudes) Theorem: If X is a Banach space and C' C X
is weakly compact, then conv(C) is weakly compact.

Theorem: If X is a Banach space and C' C X is closed, TFAE:

1. C' is compact
2. there exists (x,) in X such that ||z,| — 0 and C' C conv(zx,,)
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